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Abstract

The low-lying singlet and triplet states of MgO have been studied using a SA-CASCF/IC-

MRCI approach using the aug-cc-pV5Z basis set. The spectroscopic constants (re, ωe, and

Te) are in good agreement with the available experimental data. The computed lifetime

for the B state is in excellent agreement with two of the three experimental results. The d

state lifetime is in good agreement with experiment, while the computed D state lifetime

is about twice as long as experiment.
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I. INTRODUCTION

Magnesium is a common element in silicate rocks, such as those found in stony

meteors. Mg atoms are therefore an ablation product of meteor entry, which pro-

duces a constant flux of Mg that is deposited in the upper atmosphere, where Mg

contributes to the chemistry. The ablation process produces Mg in electronically ex-

cited states and Mg atom emission has been observed. In the wake of the entering

meteor, these Mg atoms can react with O atoms, also formed in the shock layer, to

make electronically exited MgO, which can emit.

Given its contribution to atmospheric chemistry there have been several experi-

mental1–10 and computational10–12 studies of MgO. Many features of the spectroscopy

of MgO have been determined accurately by experiment; the re, ωe, and Te values of

many of the low-lying states are well established. The dipole moment values of the

X and B states have been reported1. Finally we should note that the dissociation

energy of MgO has been of some controversy13; in addition to the uncertainty in the

measurements, the X state does not dissociate to ground state atoms, which has led

to additional confusion.

The lifetimes of the excited states are not well established. The B1Σ+ state ν ′=0

lifetime was measured to be 32.7±1.7 ns by Diffenderfer et al.10, 22.5±1.5 ns by

Büsener et al.1, and 21.5±1.8 ns by Naulin et al.2. Naulin et al. noted that their

band heads suggested that J ′ was approximately 70 and this should also apply to the

experiments of Diffenderfer et al., while Büsener et al. reported their value as J ′=1.

Thus two experiments, one with J ′=1 and the other with J ′ ≈70 support a value of

about 22 ns, while one experiment with J ′ ≈70 favors a higher value.

The calculations of Diffenderfer et al. (24 ns) would seem to support the lower

value, while Maatouk et al.12 computed J ′=0 lifetime of 33.3 ns, which supports the

longer lifetime value. However, Maatouk et al. suggested the experiments with the

shorter lifetimes were for J ′=70, and reported a computed lifetime of 22.0 ns for this

J ′ value. They then suggested their calculations show that both experimental values

were correct; the longer lifetime is for J ′=0 while the shorter lifetime for J ′=70.

This interpretation appears odd because the variation in lifetime with J ′ reported
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by Maatouk et al. seems unreasonably large. In addition to the B state lifetime,

experimental lifetimes of the D1∆ and d3∆ have been reported2,10.

In this manuscript we reinvestigate MgO with the focus on obtaining accurate

transition dipole moments so that precise emission data can be generated for the

low-lying states. The computed lifetimes are compared with the measured lifetimes.

II. METHODS

We are interested in the singlet and triplet states arising from the low-lying states

of Mg and O, namely the Mg 1Sg state with the O 3Pg,
1Dg, and 1Sg states, and the Mg

3Pu state with the O 3Pg state. This gives rise to three 1Σ+, two 1Σ−, three 1Π, two

1∆, one 3Σ+, three 3Σ−, three 3Π, and one 3∆ states. In addition to these states, the

previous studies11,12 have shown an additional low-lying 3Σ+ state, so this was added

to our study. Our initial procedure was to perform dynamically weighed14 state-

averaged complete active space self-consistent-field (DW-SA-CASSCF) calculations

for the singlets and triplets identified above. The Mg 1s, 2s, and 2p orbitals and

the O 1s and 2s orbitals are treated as inactive. The oxygen 2p and 2p′ and Mg

3s and 3p orbitals are in the active space. More extensive correlation is included

using the internally contracted multi-reference configuration interaction (IC-MRCI)

approach15. The CASSCF configurations are included in the reference space and the

oxygen 2s orbital is also correlated in the IC-MRCI calculations. The augmented

correlation consistent quintuple zeta (aug-cc-pV5Z) basis16–19 is used. However, as

discussed below, this choice of states does not lead to smooth potentials at the IC-

MRCI level. Additional states were added to the DW-SA-CASSCF and IC-MRCI

approach until smooth potentials were obtained, at least for the states of most interest

to us. The need to add more states was not unexpected as the initial choice of states

considered only the low-lying atomic states, but this system is very ionic and states

arising from the Mg++O− and Mg+2 and O−2 can become important in the bonding

region. The final choice of states is discussed below.

The calculations were performed in C2v symmetry and by averaging all components

of the degenerate states, the DW-SA-CASSCF wave functions effectively have C∞v
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symmetry. However, the IC-MRCI wave functions only have C2v symmetry, and

therefore the A1 and A2 components of the ∆ states are not identical. We study both

components and the calculations yield the same re and ωe values, and the Te values

differ by less than 3 cm−1.

We note that our approach is similar to that of Maatouk et al.12, but we should

point out some important differences. Maatouk et al. reported their basis sets as

cc-pV5Z, but from the number of functions they report, it is more likely that they

used the cc-pCV5Z sets. Since they do not correlate the core electrons, the tight

functions they include are not expected to have any significant effect on the results.

However, their basis set is missing the diffuse functions, which we include, that will

improve the description of O−, therefore our basis set is expected to be superior for

MgO. They include the oxygen 2s electrons in the CASSCF, while we do not. The

addition of the second set of oxygen 2p orbitals to the CASSCF is to improve the

description of O− due to 2p to 2p′ excitations. For oxygen the 2s to 3d excitation

with a recouping of the 2p electrons is an important atomic correlation effect, which

we do not want to compete with the O− 2p to 2p′ correlation, so we do not include

the O 2s in the active space, but we do correlate it in the IC-MRCI treatment.

While the Davidson (+Q) correction gives a small overall improvement in the

spectroscopic constants (re, ωe, and Te) , the shape of the curves at avoided crossing

depends on which version, “fixed”, “relaxed”, or “rotated”, of the +Q is used. At

some avoided crossings the +Q correction makes the potentials less smooth. On

the basis of the small +Q effect and the visual impression that the potentials look

more reasonable at the IC-MRCI level than when any of the three version of the +Q

correction are applied, we use the IC-MRCI energies without correction.

In the typical approach, the phase of the transition moments is undefined. We

avoid this uncertainty as follows. We pick one r value as reference and perform a

standard calculation. We perform the CASSCF calculation for the adjacent point

and compute the diabatic orbitals. This makes the orbitals at the second point as

similar as possible to those at the first, or reference point. The reference orbitals are

orthogonalized using the Gram-Schmidt procedure at the displaced geometry and the

overlap between the two sets of orbitals is computed to confirm that the overlap is
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larger than 0.5 for analogous pairs of orbitals. We note that while we use diabatic

orbitals, we are not performing diabatic calculations. After performing the IC-MRCI,

we compute the overlap between the CI vectors for these two points. Since the orbitals

are similar and have the same phase, the overlap of the CI vectors allows the phase

of the transition moments to be made consistent. We should note that one cannot

use a single point as reference for the entire curve since the orbitals change too much

for points that differ significantly in r value. So we proceed stepwise and use the

previous r value as reference. Overall this procedure works well, but we did find

for some choices for the number of states included in the calculation, that for some

of the upper states at specific r values, problems arose. This occured because the

overlap of the CI wave functions was very small due to an avoided crossing, which

dramatically changes its character at this point. For these few crossing points, our

automatic determination of the phase did not work and we adjusted the overlap by

hand to make the transition moment curves smooth. We should note that this is not

as arbitrary as it might initially seem as there are several moments for each state and

this phase adjustment made all of the moments smooth. In addition, this problem

tends to happen for the higher lying states, so adding more states not only improves

the shape of the potentials, it eliminates the phase problems for the states of most

interest.

A series of calibration calculations are performed using the coupled cluster sin-

gles and doubles approach23, including the effect of connected triples determined

using perturbation theory24, CCSD(T). For the open-shell systems the partial spin

restricted, RCCSD(T), approach25 is used. Two series are used; in the first, only

the valence electrons are correlated and in the second, all electrons except the Mg

1s are correlated. These calculations use the aug-cc-pCV5Z set26,27. This basis set

starts from the aug-cc-pV5Z sets and adds tight functions for the core correlation and

makes the Mg s contraction more flexible. It should produce valence results very sim-

ilar to the aug-cc-pV5Z, but is also suitable for correlation of the inner shell electrons.

The importance of scalar relativistic effects were tested in the CCSD(T) calculations

using the Douglas-Kroll-Hess approach29 and they were found to be very small, so

were not included in the reported calculations. All calculations are preformed using
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MOLPRO15,20–22,25.

The best way to compute a very accurate De value is to minimize the differential

correlation effects. For MgO, which has a very large ionic component to the bonding,

one can dissociate to Mg+ and O− and then correct to the ground state asymptote

using the experimental ionization potential (IP) of Mg and electron affinity (EA) of

O. This approach can be used for the a3Π state as it is well described by a single

configuration and the Te is well known. Thus our first approach to compute De uses

De = E(MgO 3Π)− E(Mg+)− E(O−)− IP (Mg) + EA(O) + Te(X − a), (1)

where the compute energies, E, are combined with the experimental IP, EA, and

Te values. The X1Σ+ state has more multi-reference character as measured by the

T1 diagnostic28 (the Euclidian norm of the vector of t1 amplitudes divided by the

square root of the number of electrons correlated), probably arising from the Mg2+O2−

character, and therefore has a sizable differential correlation effect. We use the X1Σ+

state to help assess the accuracy of our approach. The De for this state is computed

as

De = E(MgO 1Σ+)− E(Mg+)− E(O−)− IP (Mg) + EA(O). (2)

The vibrational energy levels are computed using the approach of Tobin and

Hinge30. The potentials are fit to spline functions and with a centrifugal poten-

tial added for J 6=0. The reported ωe values are determined by a 1/r fit to the three

points nearest the minima. For the low-lying states these results are very similar to

the results obtained by fitting the four lowest vibrational levels to ωe, ωexe, and ωeye.

For the upper states, the curve crossings and double well potentials means that the

two approaches can differ significantly. The lifetimes are evaluated using the com-

puted potentials and transition moments. When the Te is known from experiment,

the computed potentials are shifted to match experiment. The maximum shift was

544 cm−1.
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III. RESULTS AND DISCUSSION

As we noted in the methods section, it was sometime necessary to include more

states in the CASSCF and IC-MRCI procedure than originally planned based on

specific atomic asymptotes and/or previous results. We illustrate this using the 3Π

states. Our first calculations included one 3Σ+, three 3Σ−, three 3Π, and one 3∆

states based only on the atomic asymptotes. While the 3Σ+, 3Σ−, and 3∆ states

appeared quite reasonable, the third 3Π state had an unreasonable shape, see Fig. 1.

Adding a fourth 3Π state to the CASSCF and IC-MRCI improved the third 3Π state,

but the fourth state looked strange. Including the fifth 3Π state resulted in five states

that look very reasonable, see Fig. 1. There are only small changes in the (3)3Π state

when the fifth state is added. Since the (4)3Π state is similar in energy to the (3)3Π,

the final calculation included five 3Π states. We note that Maatouk et al. plotted

their three 3Π states and the third state showed a clear hump, which is not present

in our curves. This is probably a result of our inclusion of two additional 3Π states

in the CASSCF procedure.

Our procedure was to perform a calculation including a preliminary estimate for

the number of states of interest, then to add one state in each symmetry and repeat

the calculations. If the extra state did not affect the states of interest, it was removed.

In this way, we determined the number of states to include in the averaging procedure.

The triplet and singlet states are shown in Figures 2 and 3. Thirty-one points

between 1.2 and 10 Å were computed for the triplet states. For the singlet states,

the point at 1.2 Å was excluded due to convergence problems. These final DW-SA-

CASSCF/IC-MRCI calculations included three 3Σ+, three 3Σ−, five 3Π, and one 3∆

states in the triplet study and five 1Σ+, two 1Σ−, four 1Π, and two 1∆ states in

the singlet study. We note that our E1Σ+ state shows a smaller hump than that of

Maatouk et al.; as for the 3Π states, this is probably a result of our including more

1Σ+ states in the SA-CASSCF procedure.

The spectroscopic constants are summarized in Table I along with

experiment5,7–9,32. Before comparing with experiment, we should note that our

results are similar to those reported for Maatouk et al.; it appears that the different
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basis sets and different numbers of states included in the SA-CASSCF/IC-MRCI

procedure did not have a significant effect on the potentials near equilibrium for the

states studied. However, on the basis of the lifetimes reported below, the differences

in treatment did affect the transition moments.

Before discussing the IC-MRCI results with experiment, we will compare our IC-

MRCI and CCSD(T) results for the X1Σ+ and a3Π states, given at the bottom of

Table I, since this will give some insight into errors associated with neglecting the

core correlation in the IC-MRCI calculations. These calculations will also be used to

obtain our best estimate for the De value.

The CCSD(T) valence treatment of the a3Π state is in good agreement with the

IC-MRCI results, while for the X1Σ+ state the CCSD(T) re and ωe values are shorter

and larger, respectively, than the IC-MRCI results. In fact, the CCSD(T) ωe value is

larger than experiment. We suspect this is due to the multi reference character that

is underestimated in the CCSD(T) approach. However, both states are sufficiently

well described that the CCSD(T) approach can be used to assess the importance of

the inner shell correlation. A comparison of the valence and core plus valence results

shows that inner shell correlation for the X1Σ+ and a3Π states reduces re by about

0.014 and 0.013 Å and increases ωe by 19 and 5 cm−1, respectively. It also increases

Te by 340 cm−1. On this basis we speculate that much of the difference between

IC-MRCI and experiment arises from neglecting the inner shell correlation in our

CASSCF/IC-MRCI calculations. We should note however that some of the error in

the Te values also arise from errors in the asymptotic separations, for example at the

IC-MRCI level the X1Σ+-a3Π separation at 10 Å is 180 cm−1 larger than the correct

separation between these two states, namely the O 3Pg− 1Dg separation. If this error

in the asymptotic separation carries over to the Te value, this would reduce the error

in Te by an additional 180 cm−1. Since our main goal is the spectroscopy of many of

the low-lying states, we accept this level of accuracy.

The computed De values are summarized in Table II. We first note that using

the a3Π state (i.e. eq 1) yields very similar values at the SCF and CCSD(T) levels

for the valence and core+valence treatments. That is, there is a very small effect

of electron correlation on the De. Using the X1Σ+ state (eq 2) has a correlation
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effect that is essentially equal to the entire De value. However, despite this large

correlation effect, the best value from the CCSD(T) with core correlation is only

0.03 eV smaller than that obtained using the a3Π state. We should also point out

that Prascher et al.19 performed analogous calculations with no experimental input,

by dissociating to ground state atoms and found results very similar to our values.

This agreement between the different methods for computing De, combined with the

very small correlation contribution to the De for a3Π approach, gives us confidence

in our De, which we suspect is accurate to about ±0.1 eV. Our current estimate

(2.7±0.1 eV) is in good agreement with our previous estimate13 of 2.65±0.16 eV. We

stress that this is for dissociation to the Mg 1Sg and O 3Pg asymptote. The De value

for the X1Σ+ dissociating to the asymptote to which it correlates is 4.65 eV. This

is significantly larger than the value deduced by Reddy et al.31 (3.674±0.075 eV) by

extrapolating the ground state potential to dissociation.

Returning to the IC-MRCI results in Table I, our computed re values tend to

be slightly longer than experiment by 0.01-0.02 Å. On the basis of the CCSD(T)

calibrations, this is attributed to the neglect of core correlation. The computed ωe

values are in good agreement with experiment, and are, in general, smaller than

experiment, as expected from the CCSD(T) calibration. The computed Te values

are in good agreement with experiment. In most cases, the computed values are too

small, consistent with the difficulty in describing the X1Σ+ state with its Mg+2O−2

character and the neglect of core correlation. The computed X and B state dipole

moments for ν=0 are 5.99 and 5.72 D, respectively, which are in good agreement with

the experimental values of 6.2±0.6 and 5.94±0.24 D measured by Büsenet et al.1.

The computed transition moments are shown in Figure 4 and the computed life-

times are given in Table III. Our computed lifetime for the B state is mostly de-

termined by decay to the X state. We have a very slow decrease in lifetime with

increasing ν ′, this was also observed in the calculations of Maatouk et al.12 and in the

experiments of Naulin et al.2 Our value is in good agreement with the calculations of

Diffenderfer et al.10 and the experiments of Naulin et al.2 and those of Büsenet et al.1,

but smaller than the calculations of Maatouk et al. and the experiment of Diffend-

erfer et al. As noted in the introduction Maatouk et al. attributed the difference in
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experimental values to the J ′ values, namely J ′=0 for the longer experimental value

and J ′=70 for the shorter experiments. Unlike Maatouk et al., our computed lifetime

for J ′=70 is only slightly smaller than that for J ′=0, 21.7 vs. 22.1 ns. This small

difference is consistent with the very similar values for the experiments of Naulin et

al. (J ′=70) and Büsenet et al. (J ′=1). Therefore we do not believe that the difference

between the experimental values can be ascribed to a difference in J ′. We note that

in their Table IV caption they state that they are computing the delay of all J ′ levels

to ν ′′=0 J′′=0. If we ignore the ∆J=±1 selection rule for 1Σ+ − 1Σ+ transitions and

evaluate the ν ′=0 lifetime allowing the J ′=70 level to decay to the J ′′=0 levels, we

obtain a lifetime of 16.8 ns, which is shorter than the correctly computed value. Thus

we believe that the table caption of Maatouk et al. is correct and that they ignored

the ∆J=±1 selection when they determined the lifetime of J ′=70.

In addition to the B state, we evaluate the lifetimes of the D1∆, d3∆, C1Σ−, and

c3Σ+ states. We find these states have very similar lifetimes, which are determined,

or essentially determined, by the decay to the lowest Π state of the same spin, namely

the A1Π and a3Π states. For the D, d, C, and c states, 90% of the wave function

is described by the occupation ...5σ26σ22π33π1, while the A1Π and a3Π states are

both described by ...5σ26σ27σ12π3. That is, all of these transitions correspond to a

3π → 7σ transition, and not surprisingly they have similar lifetimes. Our computed

d state lifetime is in excellent agreement with experiment of Naulin et al. and good

agreement with that of Diffenderfer et al. Our compute lifetime for the D state

however, is 17% longer than that of the d state, while the experiments of Naulin

et al. show the D state to have about half the lifetime of the d state. Given the

excellent agreement between our work and that of Naulin for the B and d state, we

find the difference for the D state somewhat unexpected. However we should note

that lifetime of the D state is close to the temporal width of the laser pulse and

hence there could be some additional uncertainty in the experimental value. Another

experiment for the D state lifetime would be welcomed.
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IV. CONCLUSIONS

Thirteen singlet and twelve triplet states of MgO have been studied using the

SA-CASCF/IC-MRCI approach using the aug-cc-pV5Z basis set. The computed

re, ωe, and Te values are in good agreement with the available experimental data.

The computed lifetime of the B1Σ+ state of 22.1 ns is in good agreement with the

computed value of Diffenderfer et al.10 (24 ns) and two of the experiments1,2 that

yielded values of 21.5 and 22.5 ns, We suggest that the values of 32.7 and 33.3 ns

measured10 and computed12 are too long. Our computed lifetime (8.6 ns) for the d

state is in good agreement with experiment2,10 11.8±0.5 and 7.8±1.8 ns, but our D

state lifetime (10.1 ns) is longer than determined in experiment2, 4.3±1.0 ns. Given

the agreement for the B and d states and the similar character for the D and d states

and the A and a states, we do not understand the origin of the difference in D and d

state lifetimes found in experiment.
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TABLE I: Summary of spectroscopic constants.

State re(Å) ωe(cm−1) Te(cm−1)

IC-MRCI Expa IC-MRCI Expa IC-MRCI Expa

(5)1Σ+ 1.962 1658.4 51 730

(4)1Σ+ 1.724 864.3 47 293

(2)1Σ− repulsive

(3)3Σ− repulsive

(2)1∆ repulsive

(5)3Π 2.196 701.0 45 394

(3)3Σ+ 1.769 716.1 45 200

(4)1Π 2.189 1014.8 45 117

(4)3Π 1.960 878.9 39 470

E1Σ+ 1.826 [1.829] 728.7 [705] 38 964 37 722

G1Π 1.854 [1.834] 686.6 38 887 40 260

(3)3Π 1.864 636.1 37 681

F 1Πb 1.782 1.766 718.6 705 36 521 37 919

(2)3Π repulsive

(2)3Σ− 2.019 802.4 31 189

C1Σ− 1.886 1.872 618.7 632.4 28 903 30 081

D1∆ 1.885 1.871 626.9 632.5 28 643 29 852

(1)3Σ− repulsive

d3∆c 1.877 1.871 649.8 655.2 28 381 29 466

c3Σ+ 1.869 664.3 27 352

B1Σ+ 1.757 1.737 803.7 824.0 19 439 19 984

b3Σ+d 1.808 1.791 674.4 ≈670 7 802 8 437

A1Π 1.879 1.864 660.0 664.4 2 811 3 563

a3Πe 1.884 1.868 643.7 650.2 1 932 2 621

X1Σ+ 1.769 1.749 768.6 785.0 0 0

CCSD(T) valence

a3Π 1.883 647.4 2030

X 1.753 798.0

CCSD(T) core+valence

a3Π 1.870 652.5 2370

X 1.739 817.0

a Huber and Herzberg32, unless otherwise noted.

b Bellert et al.5

c Bourguignon, and Rostas7

d Kim et al.9. Note their T0 was converted to Te using our computed ωe values.

e Ip et al.8
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TABLE II: Calculation of De for the X state with respect to the Mg 1Sg+O 3Pg asymptote

.

level of theory Eq 1 Eq 2 Prascher et al.19a

SCF 2.73 −0.03

CCSD(T) valence 2.66 2.58 2.65

CCSD(T) core+valence 2.71 2.68 2.65

a Computed to ground state atoms with no experimental data used. The aug-cc-pV5Z and

aug-cc-pCV5Z results are given.
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TABLE III: Summary of lifetimes, in ns, for selected excited states of MgO.

level State

ν ′ Ba D d C c

Totala B −X B −A
Theory

Present work

0 22.1 28.7 95.5 10.1 8.6 9.7 9.6

1 21.9 29.2 87.0 10.3 8.7 9.9 9.7

2 21.7 29.9 79.8 10.4 8.8 10.1 9.7

3 21.6 30.5 73.8 10.6 8.9 10.3 9.8

4 21.4 31.1 68.7 10.8 9.0 10.5 9.8

Diffenderfer et al.10

0 24

Maatouk et al.12

0 33.3

1 33.1

2 33.0

Experiment
Naulin et al.2

0 21.5±1.8 4.3±1.0 7.8±1.8

1 21.9±2.1

2 21.7±2.0

3 21.5±3.2

Diffenderfer et al.10

0 32.7±1.7 11.8±0.5

Büsener et al.1

0 22.5±1.5

a Total is lifetime of the B state, B −X and B −A are the lifetimes computed assuming

only B −X and B −A emission occurs.
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FIG. 1: The computed IC-MRCI potential curves for various numbers of 3Π states.
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FIG. 2: The computed IC-MRCI potential curves for the triplet states.
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FIG. 3: The computed IC-MRCI potential curves for the singlet states. Note that the

C1Σ− and D1∆ states are essentially degerate on this scale and therefore very difficult to

separate.
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FIG. 4: The computed IC-MRCI transition moment curves for the transitions used to

compute the lifetimes in Table III. Note the D − A and d − a moments are the cartesian

moment < Πx|y|∆xy >, where
√

2 < Πx|y|∆xy >=< Π| (x+iy)√
2
|∆ >
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